Extensions 1→N→G→Q→1 with N=C2 and Q=C244S3

Direct product G=N×Q with N=C2 and Q=C244S3
dρLabelID
C2×C244S348C2xC2^4:4S3192,1399


Non-split extensions G=N.Q with N=C2 and Q=C244S3
extensionφ:Q→Aut NdρLabelID
C2.1(C244S3) = C24.73D6central extension (φ=1)96C2.1(C2^4:4S3)192,769
C2.2(C244S3) = C24.76D6central extension (φ=1)96C2.2(C2^4:4S3)192,772
C2.3(C244S3) = C25.4S3central extension (φ=1)48C2.3(C2^4:4S3)192,806
C2.4(C244S3) = (C2×C6)⋊8D8central stem extension (φ=1)48C2.4(C2^4:4S3)192,776
C2.5(C244S3) = (C3×D4).31D4central stem extension (φ=1)48C2.5(C2^4:4S3)192,777
C2.6(C244S3) = C24.31D6central stem extension (φ=1)96C2.6(C2^4:4S3)192,781
C2.7(C244S3) = C24.32D6central stem extension (φ=1)96C2.7(C2^4:4S3)192,782
C2.8(C244S3) = (C3×Q8)⋊13D4central stem extension (φ=1)96C2.8(C2^4:4S3)192,786
C2.9(C244S3) = (C2×C6)⋊8Q16central stem extension (φ=1)96C2.9(C2^4:4S3)192,787
C2.10(C244S3) = C22.52(S3×Q8)central stem extension (φ=1)192C2.10(C2^4:4S3)192,789
C2.11(C244S3) = (C22×Q8)⋊9S3central stem extension (φ=1)96C2.11(C2^4:4S3)192,790
C2.12(C244S3) = (C3×D4)⋊14D4central stem extension (φ=1)96C2.12(C2^4:4S3)192,797
C2.13(C244S3) = (C3×D4).32D4central stem extension (φ=1)96C2.13(C2^4:4S3)192,798
C2.14(C244S3) = 2+ 1+46S3central stem extension (φ=1)248+C2.14(C2^4:4S3)192,800
C2.15(C244S3) = 2+ 1+4.4S3central stem extension (φ=1)488-C2.15(C2^4:4S3)192,801
C2.16(C244S3) = 2+ 1+4.5S3central stem extension (φ=1)488-C2.16(C2^4:4S3)192,802
C2.17(C244S3) = 2+ 1+47S3central stem extension (φ=1)248+C2.17(C2^4:4S3)192,803
C2.18(C244S3) = 2- 1+44S3central stem extension (φ=1)488+C2.18(C2^4:4S3)192,804
C2.19(C244S3) = 2- 1+4.2S3central stem extension (φ=1)488-C2.19(C2^4:4S3)192,805

׿
×
𝔽